Rice grown under deepwater ecosystem is considered to be natural farming and hence they are considered to be input efficient. Thus, to identify gene responsible for nutritional content under natural conditions, a genome-wide association study (GWAS)was performed. GWAS identified single nucleotide polymorphisms (SNPs) significantly associated with various nutritional quality traits such as Zn (mg/kg), Fe (mg/kg), Protein (%), Oil (%), Amylose (%), Starch (%), Phytic acid (%), Phenol (%) and TDF (%) in 184 deepwater rice accessions evaluated over 2 consecutive years. A total of 278 SNPs distributed across 12 chromosomes were found to be significantly associated with Zn, Oil and Phenol content. Among them, eight high confidence SNPs were significant and identified on chr1 (AX-95933712), chr7 (AX-95957036), and chr8 (AX-95965181) for Zn content. Similarly, on chr2 (AX-95945186), chr8 (AX-95964718), and chr11 (AX-95961099) have been found to be associated with Oil content and on chr3 (AX-95922121) and chr4 (AX-95963889) for Phenol content. Genomic regions of ± 220 kb flanking the three consistent lowest p value containing SNPs for each trait were considered for finding superior haplotypes. These SNPs showed significant phenotypic variations with different identified haplotype blocks. The allelic variations with phenotypes were considered to be superior haplotypes i.e., Block 1: Hap 1 (ACCC) for high Zn content, Block 2: Hap 1 (CT) for high Oil content, and Block 2: Hap 1(CGGG) for low Phenol content. The discovered superior haplotype with high nutritional content could be important for understanding the mechanisms involving nutrient use efficiency. Thus, the present study demonstrated that developing rice varieties with appropriate nutritional quality traits will be possible through the incorporation of such superior haplotypes in breeding programs.
Read full abstract