For a gas pipeline with multiple gas sources, the significance of tracking the composition of natural gas is increasing with the implementation of X+1+X system for the natural gas industry in China. Mathematically, the tracking problem is usually described by a system of partial differential equations (PDEs). The continuity equation on gas composition has been developed to track natural gas composition according to the law of mass conservation. The algorithm resulting from the method of characteristics (MOC) is proposed to solve the system of PDEs. Compared to the original MOC, numerical solutions of the continuity equation on gas composition are obtained after the hydraulic calculation and thermal calculation. Moreover, different combinations of boundary conditions for the MOC are derived, which could expand the range of application of the MOC and be applicable to various operating conditions. The heating values of diverse gas sources have been determined following the methods documented in ISO 6976:2016. The case study of a gas pipeline in China verified the validity of the algorithm via the commercial simulation software Pipeline Studio for Gas (TGNET). The heating value and gas composition obtained by the algorithm can be used in the custody transfer metering of natural gas pipelines for Class B and C metering stations described in GB/T 18603−2014.
Read full abstract