Understanding the impact of plastic and its additives on wild species is crucial as their presence in the environment increases. Polybrominated diphenyl ethers (PBDEs), once used as flame retardants, were restricted due to known toxic effects, but are still detected in the environment. Naturally occurring methoxylated PBDEs (MeO-BDEs) can result from PBDE transformation and may cause similar hazardous effects. Yellow-legged gulls (Larus michahellis, YLG) and Audouin's gulls (Ichthyaetus audouinii, AG) are highly susceptible to plastic additives, due to their distribution, trophic position, and behaviour. In this study, we assessed PBDEs and MeO-BDEs uptake in different tissues and their effects on physiological and reproductive parameters. Findings indicate that, apart from annual differences, adult AG accumulated more MeO-BDEs than YLG in a natural breeding habitat (Deserta), while the latter had lower PBDE levels than YLG breeding in the city of Porto. In relation to chicks, only YLG from Deserta showed higher PBDE concentrations than AG chicks. Individual analysis of each physiological parameter revealed impacts only for adult YLG from Deserta, with neurofunction and immune system inhibition at higher MeO-BDE concentrations. For chicks, AG showed impaired neurofunction, while YLG chicks from Porto exhibited potential genotoxicity effects triggered by higher MeO-BDE levels. Overall health analysis showed activation of antioxidant defences and compromised immune system in YLG adults from Porto due to high values of PBDEs, while chicks from Deserta exhibited inflammation and oxidative stress with high concentrations of MeO-BDEs in the same species. Fertility parameters showed significant differences for sperm counts though suggesting individuals may be able to compensate any exposure effects. This study confirms the widespread presence of plastic-associated compounds and their harmful effects on gulls, particularly on neurofunction, immune system, oxidative balance and fertility, especially due to the presence of MeO-BDEs.