The changes of structure and ligand binding properties of beta-LG B have been studied by fluorescence and circular dichroism spectroscopy in ethanolic solutions. Fluorescence measurements of retinol/beta-LG interactions at 480 nm in various ethanol concentrations show that the maximal fluorescence intensity induced by this interaction between retinol and beta-LG is observed around 20% v/v of ethanol. It is reduced to zero at 40% and 50% of ethanol. These results suggest that there are two distinct structural changes in beta-LG occurring between 20% and 30% and around 40% of ethanol. The first transition, which increases affinity and the apparent number of binding sites for retinol, may be related or similar to the Tanford transition. The strong quenching of retinol emission at 480 nm in 40% of ethanol indicates the radical transformation of beta-LG tertiary structure and the release of retinol. CD spectra at the aromatic region show that secondary and tertiary structures of beta-LG are not significantly affected between 0% and 20% of ethanol. In 30% of ethanol, beta-sheet percentage of beta-LG decreases with respect to native beta-LG (from 55% to 46%). beta-Sheet percentage in beta-LG increases in 40% and 50% alcohol (51% and 53%) relative to 30% of ethanol, which also indicates the strong rearrangement of the secondary structure of beta-LG, while its tertiary structure and beta-LG interactions are radically changed.
Read full abstract