Current studies on facial growth and development have been largely based on European populations. Less studied are African populations, who because of their distinct genetic makeup and environmental conditions, provide deeper insights into patterns of facial development. Patterns of facial shape development in African populations remain largely uncharacterised. Our study aimed to establish facial growth and development trajectories based on a cohort of 2874 Bantu Africans from Tanzania aged 6-18 years, with particular focus on identifying morphogenetic processes that lead to observed developmental shape changes. Procrustes ANCOVA suggested sexually dimorphic patterns of facial shape development (p = 0.0036). The forehead was relatively contracted during development in both sexes. The glabella region was more anteriorly displaced in females due to expansion in the region laterosuperior to the eyes. Nasal protrusion increased with development, which was found to arise from local expansion in the nasal alae and columella. Local expansion in the upper and lower labial regions resulted in forward displaced lips in both sexes, with the effect more pronounced in males. The mentum was displaced more anteriorly in females due to comparatively more expanded mental regions with development. The lateral facial region corresponding to the underlying body of the mandible were developmentally expanded but were posteriorly positioned due to protrusive growth of surrounding structures. Generalised additive modelling of Procrustes variance suggested that facial variation decreased non-linearly with age (p < 0.05). Relative principal component analysis suggested that variations in facial outline shape were developmentally constrained, whereas nasolabial and mental regions, where developmental changes were significant, became morphologically diversified with development. In contrast to simple descriptive illustration of facial shape development, we gained transformative insights into patterns of facial shape development by analysing morphogenetic processes and variational properties. Our analytical framework is broadly applicable to morphometric studies on ontogenetic shape changes.