We extend previous calculations of leading-order correlation functions of spin-0 and spin-1 light quarkonium hybrids to include QCD condensates of dimensions five and six, with a view to improving the stability of QCD sum-rules analyses in previously unstable channels. Based on these calculations, prior analyses in the literature, and its phenomenological importance, we identify the exotic $J^{PC}=0^{+-}$ channel as the most promising for detailed study. Using Gaussian sum-rules constrained by the H\"older inequality, we calculate masses of light (nonstrange and strange) quarkonium hybrid mesons with $J^{PC}=0^{+-}$. We consider single narrow, single wide, and double narrow resonance models, and find that the double narrow resonance model yields the best agreement between QCD and phenomenology. In both non-strange and strange cases, we find hybrid masses of $2.60$ GeV and $3.57$ GeV.