Liver cancer is a leading cause of cancer-related mortality, with about one million people losing their lives each year. The disease becomes even more dangerous when tumors cannot be removed through surgery. Globally, hepatocellular carcinoma (HCC) ranks third in terms of fatality rates among liver cancers. It is also the most frequent type of liver cancer. Due to the high mortality rate associated with this malignancy, it is a hotspot for researchers looking to improve treatment methods. Nanotechnology plays an important part in these at-tempts. Various types of nanoparticles (NPs) have been investigated for their ability to fight liver cancer. NPs are a vast class of materials. The article details the efforts made to include inorganic NPs, such as silver, gold, metal oxide, platinum, calcium, selenium, and other un-common materials into drug delivery systems (DDS) for therapeutic, carrier, or imaging pur-poses. This review discusses the function of carbon-based NPs in DDS for the treatment of liver cancer, including polymeric, polysaccharide, lipid, and carbon dot NPs, all of which have been extensively researched for this purpose. The purpose of this review is to provide a con-cise overview of recent developments in the field of HCC based on current research and clini-cal diagnosis and treatment guidelines. Further goals include elucidating the current state of nanomaterials research, its limitations, and the potential for future advancements in the field, as well as the use of nanotechnology in the detection and treatment of HCC.
Read full abstract