Monte Carlo simulations were conducted to investigate the interaction between nucleation and the rates of chemical reduction in Au/Ag, Au/Pt and Au/Pd nanoparticles prepared in microemulsions using a one-pot method. The impact of nucleation on final nanostructure depends on the critical nucleus size value: at a high critical nucleus size, nucleation becomes the main factor in determining the final nanostructure, even with a very large difference in reduction rates, as seen in the Au/Pd pair. However, when the critical nucleus size is small, the difference in reduction rates of the two metals becomes the key parameter determining the final nanostructure. Furthermore, the relevance of heteroatomic nucleation on the mechanism of nanoparticle formation depends on the difference between the reduction rates of the two metals. Smaller differences, such as in the Au/Ag or Au/Pt pairs, result in a greater impact of heteroatomic nucleation on the final nanostructure. In contrast, in the Au/Pd pair, heteroatomic nucleation becomes less important due to the low availability of Pd until late stages of synthesis. This study provides deeper insight into the complex mechanisms that govern reactions in microemulsions.
Read full abstract