Our immunity is guaranteed by a complex system that includes specialized cells and active molecules working in a spatially and temporally coordinated manner. Interaction of nanomaterials with the immune system and their potential immunotoxicity are key aspects for an exhaustive biological characterization. Several assays can be used to unravel the immunological features of nanoparticles, each one giving information on specific pathways leading to immune activation or immune suppression. Size, shape, and surface chemistry determine the surrounding corona, mainly formed by soluble proteins, hence, the biological identity of nanoparticles released in cell culture conditions or in a living organism. Here, we review the main laboratory characterization steps and immunological approaches that can be used to understand and predict the responses of the immune system to frequently utilized metallic or metal-containing nanoparticles, in view of their potential uses in diagnostics and selected therapeutic treatments.