As the process of scaling down continues at a rapid pace, there is a growing need for an alternative semiconductor device to replace CMOS. One of the alternatives that attracted a lot of attention is called nanomagnetic logic (NML). This is because NML delivers a high device density in addition to a non-volatility of stored information, beyond-CMOS technologies, and device work at room temperature. It is necessary to lower the circuit density and increase the speed of circuits like adders. Using emerging NML logic, we created a full-adder, and ripple carry adder (RCA) with a minimum area. As a result, the invented multilayer-based decimal design makes use of RCA, and full-adder, for innovative 3D topology. We used an NML framework built with perpendicular nanomagnetic (pNML) layers to simulate the characteristics of these devices. With the adder designs that have been offered the latency values are relatively low while performing exhaustive testing. Using pNML technology, a decimal adder has been constructed for the first time in the literature. In addition, simulations are carried out with the help of the Modelsim simulator. During the process of nanomagnetic designing consideration is given to both of these aspects as latency and area. To create an NML circuit, the tool MagCAD is employed. Results are better using the pNML environment-based full adder, RCA and decimal adder.