Retroreflectors are an important optical component, but current retroreflector structures and manufacturing processes are relatively complex. This paper proposes a rapid, low-cost, large-area method for fabricating retroreflectors based on microlens arrays. Tunable microlens arrays with adjustable curvature, fill factor, and sizes were prepared using photolithography and thermal reflow techniques. Subsequently, a two-step nanoimprinting process was used to create a flexible reverse mold and transfer the structure onto the desired substrate. The microlens arrays, with a diameter of 30 μm, a period of 33 μm, a curvature radius ranging from 15.5 to 18.8 μm, and a fill factor ranging from 75.1% to 88.8%, were fabricated this way. In addition, the method also fabricated microlens arrays with diameters ranging from 10 to 80 μm. Retroreflectors were made by sputtering a layer of silver on the MLAs as a reflecting layer, and tests showed that the microlens-based retroreflector exhibited superior retroreflective performance with a wide-angle response of ±75°. Microlens-based retroreflectors have the advantages of simple operation and controllable profiles. The fabrication method in this paper is suitable for large-scale production, providing a new approach to retroreflector design.
Read full abstract