Nanoformulations of therapeutic drugs with diverse chemical structures are often complex to produce and lack a universal synthesis approach. Herein, we demonstrate that hyaluronic acid (HA) can function as an assembly chaperone, facilitating the formulation of various chemical compounds into nanoparticles without necessitating chemical modification. As a proof of concept, celastrol-HA co-assembled nanoparticles (CHNPs) were synthesized and utilized in the multifactorial treatment of non-alcoholic steatohepatitis (NASH). By simply blending an aqueous solution of HA and celastrol, we achieved the formation of homogeneous, stable, and biocompatible nanoparticles, effectively addressing the critical issues associated with celastrol's poor water solubility and high systemic toxicity. of celastrol. Ex vivo and in vivo experiments demonstrated that CHNPs ameliorated NASH by inhibiting macrophage M1 polarization, reducing liver inflammation and lipid deposition, and improving metabolic disorders. Furthermore, CHNPs reduced systemic toxicity and enhanced the bioavailability of celastrol. The simplicity of the HA-based nanoparticles may facilitate the development of translational nanomedicines.
Read full abstract