Cancer is the leading cause of death worldwide. The effectiveness of chemotherapy in cancer patients is still significantly hampered by Multidrug Resistance (MDR). Tumors exploit the MDR pathways to invade the host and limit the efficacy of chemotherapeutic drugs that are delivered as single drugs or combinations. Further, overexpression of ATP-binding Cassette transporter (ABC transporter) proteins augments the efflux of chemotherapeutic drugs and lowers their intracellular accumulation. Recent progress in the development of nanotechnology and nanocarrier-based drug delivery systems has shown a better perspective with respect to the improvement of cancer chemotherapy. Nanoparticles/nanomaterials are designed to target the immune system and tumor microenvironment of cancer cells for a variety of cancer treatments in order to improve bioavailability and reduce toxicity. This review elucidates the successful use of nanomaterials for cancer therapy and addressing the MDR and throws some light on the present obstacles impeding their translation to clinical use.
Read full abstract