In this paper, the novel h-BN doped TiCrNbN thin films was deposited on the DIN 1.2714 steel using closed field unbalanced magnetron sputtering (CFUBMS) technique with variable working pressure, bias voltage, and LaB6 target voltage. The main goal is to determine the contribution of degrees of these parameters on structural and mechanical properties using Analysis of Variance (ANOVA). The deposition parameters were leveled based on L9 (33) orthogonal Taguchi design method. Microstructural and thickness of coatings were investigated using SEM. The coatings had granular and flawless surface properties. The thickness of the coatings was determined in the range of 874 nm and 1.69 μm. The deposition parameter that has the highest contribution to coating thickness is working pressure. Hardness and adhesion strength of coatings were determined employing nanohardness and scratch tester, respectively. The highest hardness among the coatings was 24.67 GPa, obtained with the 3x10-3 Torr working pressure, 100 V bias voltage and 600 V LaB6 target voltage parameters. The deposition parameter that has the highest contribution to hardness is working pressure. The coating conditions with the highest hardness exhibited the highest adhesion strength. The superiority of the contribution of working pressure on the adhesion strength was prominent compared to other parameters.