New sensing techniques with exceptional performance, i.e., high sensitivity, high selectivity, and dependability, are needed to meet the growing demand for quick and accurate environmental pollution prevention and monitoring. A novel Schiff base probe synthesized from anthraquinone and 4-(diethylamino)-2-hydroxybenzaldehyde (coded as AQHB) was synthesized and subsequently combined with anionic surfactant Sodium dodecyl sulfate (SDS) assemblies to form highly fluorescent AQHB@SDS ensemble. The zeta potential of ensemble AQHB@SDS is −52.6 mV confirm the encapsulation of AQHB (-17.3 mV) in SDS micelles. This formed fluorescent AQHB@SDS ensemble further practical applications in detection of toxic triphosgene and Hg2+ ions via naked eye color change and fluorescence quenching mechanism. The fluorescence of in-situ formed AQHB@SDS+Hg2+ complex restored by the addition of BSA. The optimized system demonstrates detection limits of 0.60, 0.68, and an impressive 0.028 nM for triphosgene, Hg2+, BSA respectively. Control experiments revealed that the -OH and -NH groups in AQHB along with anionic surfactant played crucial roles in the sensing mechanism. Moreover, the ensemble AQHB@SDS system efficiently detected triphosgene and Hg2+ in real samples, such as water and soil, highlighting its practical applicability.
Read full abstract