AbstractThe main purpose of this study was to produce reliable, color assessment outcomes to examine the extent to which single and multi‐test protocols in use meet current clinical and occupational needs. The latter include the detection of small changes in chromatic sensitivity as the earliest signs of retinal and/or systemic disease, and the need to assess the class of color vision in congenital deficiency and to quantify severity of loss. Color vision was assessed using Ishihara (IH), Farnsworth Munsell D‐15, City University (CU, 2nd ed.) and Holmes‐Wright type A (HW‐A) lantern tests. All subjects also carried out Colour Assessment and Diagnosis and Nagel anomaloscope tests. The sample included 350 normal trichromats, 1012 deutans and 465 protans (age 31.1 ± 12.4, range 10‐65 years). The results reveal the trade‐off between sensitivity and specificity, depending on the number of errors accepted as a pass on the IH test. The D‐15 and CU tests pass all normals and almost 50% of subjects with color vision deficiency. The HW‐A lantern passes all normals, 22% of deutans and 1% of protans. The multi‐test protocols designed to identify protans and to pass only subjects with mild color loss, pass over 50% of protans and deutans. Many of the subjects who fail exhibit less severe loss of color vision than others who pass. When high sensitivity for detection of congenital deficiency is achieved, single‐test protocols fail many normal trichromats. Multi‐test protocols produce large variability and fail to achieve desired aims.
Read full abstract