Hydroxyethyl starch (HES) is an important industrial additive in the paper, textile, food, and cosmetic industries and has been shown to be an effective cryoprotectant for red blood cells; however, little is known about its thermodynamic solution properties. In many applications, in particular those in biology, HES is used in an aqueous solution with sodium chloride (NaCl). The osmotic virial solution thermodynamics approach accurately captures the dependence of osmolality on molality for many types of solutes in aqueous systems, including electrolytes, sugars, alcohols, proteins, and starches. Elliott et al. proposed mixing rules for the osmotic virial equation to be used for osmolality of multisolute aqueous solutions [Elliott, J. A. W.; et al. J. Phys. Chem. B 2007, 111, 1775-1785] and recently applied this approach to the fitting of one set of aqueous HES-NaCl solution data reported by Jochem and Körber [Cryobiology 1987, 24, 513-536], indicating that the HES osmotic virial coefficients are dependent on HES-to-NaCl mass ratios. The current study reports new aqueous HES-NaCl vapor pressure osmometry data which are analyzed using the osmotic virial equation. HES modifications were measured after dialysis (membrane cut off: 10,000 g/mol) and freeze-drying using vapor pressure osmometry at different mass ratios of HES to NaCl for HES up to 50% and NaCl up to 25% with three different HES modifications (weight average molecular weights [g/mol]/degree of substitution: 40,000/0.5; 200,000/0.5; 450,000/0.7). Equations were then fit to the data to provide a model for HES osmotic virial coefficient dependence on mass ratio of HES to NaCl. The osmolality data of the three HES modifications were accurately described over a broad range of HES-to-NaCl mass ratios using only four parameters, illustrating the power of the osmotic virial approach in analyzing complex data sets. As expected, the second osmotic virial coefficients increase with molecular weight of the HES and increase with HES-to-NaCl mass ratio.