The selective oxidation of methyl glycolate by oxygen is a green route for the synthesis of methyl glyoxylate, which however faces great challenges like the consecutive hydrolysis reaction between methyl glyoxylate and by-product water. Herein, we fabricated an in-situ water separation catalytic membrane reactor (CMR) to suppress the hydrolysis of methyl glyoxylate, which can promptly and preferentially remove water from the reaction system by a hydrophilic NaA membrane. The MoO3@NaA CMR achieved a high methyl glyoxylate selectivity of 84.0 % at 260 °C and 2 bar, being 32.4 % higher than that of the conventional fixed-bed reactor (FBR), while the methyl glycolate conversion was almost the same for both modes. Moreover, the deactivation of the MoO3 catalyst caused by water in CMR was also greatly inhibited, exhibiting excellent stability as compared to FBR. The in-situ water separation strategy in this work contributed to a new concept to improve the selectivity of easily hydrolyzable products.
Read full abstract