Oyster reefs play a crucial role in the removal of nitrogen (N) from aquatic systems by facilitating nutrient regeneration and denitrification, both in their tissues and shells and surrounding sediments. However, we still have a limited understanding about the contribution of each component of the reefs (e.g. oysters vs sediments) to N processes, and whether rates are dependent on site-specific characteristics. To address these knowledge gaps, we conducted an experiment across six oyster reefs along 1080 km of the Eastern Australian coast with different sediment characteristics. By using in-situ clear and dark incubation chambers, we assessed how benthic metabolism, nutrient and dinitrogen gas (N2) fluxes varied among the following treatments: ‘oysters’, ‘sediments’, and ‘sediments + oysters’ that were used to represent components of the whole reef habitat (i.e. reef matrix vs surrounding sediments vs the interaction among them, respectively), and sites. We found that during dark conditions and at siltier sites, N2 effluxes from oysters can be up to 23 times higher than sediments, while N2 effluxes from chambers with both sediments and oysters were similar to sediment treatments, and lower than oyster treatments. These results can be explained by sediment processes including nutrient assimilation by benthic microalgae and/or lower nutrient diffusion into interstitial space. Additionally, oyster treatments showed an uptake of nitrate (NO3-) that was likely converted into N2, whereas sediment treatments showed an overall release of NO3-. In dark conditions, ammonium (NH4+) fluxes remained consistent across treatments and sites, indicating that any exports from oyster excretion (in those treatments including oysters) were either counterbalanced by or comparable to exports from sediments. This study provides evidence that the crucial contribution of oyster reefs to N removal is dependent on interactions between reef components and environmental factors.
Read full abstract