The N100m response to a specific same-sound stimulus may be altered by the degree of attention paid to the stimulus. When participants selectively pay attention to the stimulus, the N100m amplitude increases; however, minimal effects are observed on the N100m latency. In this study, we examined the effects of selective special attention (motivation) to extract the frequency (or pitch) information from a probe tone on the N100m response to the probe tone. We compared the N100m latencies and amplitudes using magnetoencephalography, with the following three experimental conditions: 1) vocalization task protocol (vocalize in tune with the pitch of the probe tone after the presentation of the probe tone), 2) hearing task protocol (just listen to the probe tone), and 3) imagining (just imagine the vocalization in tune with the probe tone). The results indicated that the N100m latency in response to the probe tone was significantly shortened in the vocalization and imagining tasks compared with the hearing task in the right hemisphere of the brain. The amplitude was significantly increased in the vocalization task compared with the imagining and hearing tasks in the right hemisphere, and in the vocalization task compared with the hearing task in the left hemisphere of the brain; that is, the attention and/or motivation required to extract the information from the stimulus tones may have caused N100m latency shortening. To our knowledge, this study is the first to demonstrate that the N100m latency may be shortened under particular attentional conditions in response to a simple tone.
Read full abstract