Organic thermoelectrics (TEs) based on carbon nanotubes (CNTs) have attracted much attention with their inherent advantages, such as, earth-abundant elements, broad electronic tunability, and excellent mechanical compliance. However, the inferior TE performance and doping stability of n-type CNTs to those of p-type CNTs have been bottlenecks to establish CNT-based next-generation TEs. Herein, we report a hybrid n-doping method that improves the n-type TE performance and long-term air-stability of water-processable single-walled CNT (SWCNT) and carboxymethyl cellulose (CMC) composite. The hybrid n-doping process with polyethyleneimine (PEI) n-dopant contains primary addition and secondary immersion doping, which causes a simultaneous increase in electrical conductivity and Seebeck coefficient through efficient n-doping and surface energy filtering effect, respectively. Furthermore, the hybrid-doped films exhibit superior long-term stability by inhibiting the oxidation of SWCNT/CMC at nanoscale, which allows to ensure the initial power factor even after storing in ambient for a month. Finally, we successfully demonstrated hybrid-doped SWCNT/CMC-based TEGs with long-term stable output characteristics. This work can offer insights to develop efficient and air-stable n-type organic TE materials and devices.
Read full abstract