As the magic methyl effect is well acknowledged in pharmaceutical molecules, the development of simple and efficient methods for the installment of methyl groups on complex molecules is highly coveted. Hence, we provide a general strategy for radical cascade cyclization of N-(o-cyanobiaryl)acrylamides by utilizing sulfonium salts as the sources of methyl radical and merging photoredox and copper catalysis. This novel protocol can access a wide variety of methylation or remote thioether-substituted benzo-fused N-heterocycle derivatives, which can be easily transformed into diverse highly valuable sulfone and sulfoximine compounds via late-stage diversification. Moreover, to further demonstrate the synthetic utility of this conversion, the methyl(phenyl)sulfide, which serves as both raw material and byproduct, can be recovered and reused in this transformation. The scale-up experiment for the one-pot two-step process directly offers the target product in good yield under the standard conditions.