ObjectiveTo investigate the role of N-glycosylation modification of proteins in adipocyte differentiation during the adipogenic process. MethodsSVF cells and adipocytes were analyzed for proteomics and intact N-glycopeptide modificationomics.Differential expression of proteins, glycoforms, and sites between the two groups was screened and subjected to Gene Ontology (GO) functional enrichment analysis, KEGG pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. The top 20 most significantly differentially expressed adipogenic differentiation-related proteins were identified, and the most pronouncedly altered proteins were analyzed for glycoforms, glycan chains, and sites. ResultsProteomics analysis identified 39,392 peptides and 5208 proteins, while intact N-glycopeptide modification profiling identified 3293 intact glycopeptides, 426 proteins, and 161 glycan chains. Proteomics identified 2510 differentially expressed proteins, with CD36 (Cluster of Differentiation 36, CD36) significantly upregulated. In adipocytes, CD36 had 4 N-glycosylation sites: N79, N220, N320, N417, with N320 being a newly identified site. GO enrichment results indicated that CD36 is associated with fatty acid oxidation, lipid oxidation, and fatty acid uptake into cells. ConclusionMultiple proteins undergo N-glycosylation modification during adipocyte differentiation, with CD36, a fatty acid translocase, being significantly expressed in adipocytes. This suggests that N-glycosylation modification of CD36 may play a crucial role in adipocyte differentiation, providing a foundation for further investigation into the function of CD36 N-glycosylation in adipocyte differentiation.