Quinoline is high toxicity and difficult biodegradation in oil washing wastewater. Therefore, efficient removal of quinoline contaminant from water bodies poses a major challenge. Hence, Co quantum dot loaded N-doped porous carbon (CoNC) nanosheets grown in situ on carbon cloth were fabricated as cathode for the degradation of quinoline in electro-Fenton system. Under optimal conditions (c(Fe2+) = 0.5 mM, U = -0.3 V, pH = 3), quinoline was completely degraded within 15 min with superior apparent rate constant of 0.385 min−1, which was 19.6 times higher than that of the ZIF-L precursor, due to the abundance of Co QDs active sites and hydrophilicity and electrical conductivity of N-doped porous carbon. In addition, three reaction pathways for quinoline were deduced by combining Density Functional Theory (DFT) calculation and Liquid Chromatography-Mass Spectrometry (LC-MS). More importantly, in situ FTIR and free energy calculations were analyzed to reveal that pathway Ⅰ as spontaneous reaction was the main reaction pathway. Finally, the toxicity of the intermediates was assessed with ECOSAR software and E. coli experiments, and the overall toxicity decreased during the degradation reactions. This work provides novel perspectives on environmental protection by designing in-situ grown cathodes through self-assembly method, thereby effectively purifying pollutants from wastewater.
Read full abstract