As a key molecule for improving cardiovascular diseases, Apelin-13 was surveyed in this work to explain its actions in controlling inflammation, pyroptosis, and myocardial hypertrophy. First, mouse models with myocardial hypertrophy were established. Then, assessments were made on the pathological variation in the heart of mouse, on the cardiac functions, as well as on the expressions of cardiac hypertrophy markers (β-MHC, ANP, and BNP), inflammatory factors (TNF-α, COX2, IL-6, ICAM-1, and VCAM-1), myocardial cell pyroptosis markers (NLRP3, ASC, c-caspase-1, and GSDMD-N), and Hippo pathway proteins (p-YAP, YAP, LATS1, and p-LATS1) by HE staining, echocardiography scanning, and western blot tests separately. The expressions of such inflammatory factors as in myocardial tissue were acquired by ELISA. After inducing the phenotype of H9c2 cell hypertrophy by noradrenaline, we used CCK-8 kits to know about the activity of H9c2 cells treated with Apelin-13, and performed ɑ-actinin staining to measure the changes in volumes of such cells. As unraveled through this work, Apelin-13 refrained the activation of the Hippo pathway, which in turn attenuated the hypertrophy, inflammation, and pyroptosis of myocardial tissue and H9c2 cells. Hence, Apelin-13 can be considered as a target for hypertension treatment.
Read full abstract