Monopolar spindle 1 (Mps1, also known as TTK) and Aurora kinase (AURK) A and B are critical regulators of mitosis and have been linked to the progression of various cancers. Here, we report the design, synthesis, and biological evaluation of a series of PROTACs (proteolysis-targeting chimeras) targeting TTK and AURKs. We synthesized various degrader molecules based on four different 2-aminoadenine-based ligands, recruiting either cereblon or VHL as the E3-ligase. Our research showed that the nature of the linker and modification of the ligand significantly influence the target specificity and degradation efficacy. Notably, compound 19, among the most potent degraders, demonstrated robust proteasome-mediated degradation of TTK with D max of 66.5% and DC50 value (6 h) of 17.7 nM as compared to its structurally akin inhibitor control, 23. The cytotoxicity of most of the synthesized chimeras against acute myeloid leukemia cell line MV4-11 was lower than that of the corresponding parent inhibitors. However, we could also identify degraders such as 15 and 26 that induce potent AURKA degradation and display comparable antiproliferative activities to their parent compound SF1. Compound 15 degrades AURKA with low DC50 value of 2.05 nM, which is 77-fold and 21-fold more selective toward AURKB and TTK and has an EC50 value of 39 nM against cancer MV4-11 cells. Overall, the observations we made with the degrader molecules we developed can further aid in the design and development of optimized TTK or AURK degraders for cancer therapy.
Read full abstract