Pathological similarities between sarcoidosis (SA) and tuberculosis (TB) suggest the role of mycobacterial antigens in the etiopathogenesis of SA. The Dubaniewicz group revealed that not whole mycobacteria, but Mtb-HSP70, Mtb-HSP 65, and Mtb-HSP16 were detected in the lymph nodes, sera, and precipitated immune complexes in patients with SA and TB. In SA, the Mtb-HSP16 concentration was higher than that of Mtb-HSP70 and that of Mtb-HSP65, whereas in TB, the Mtb-HSP16 level was increased vs. Mtb-HSP70. A high Mtb-HSP16 level, induced by low dose-dependent nitrate/nitrite (NOx), may develop a mycobacterial or propionibacterial genetic dormancy program in SA. In contrast to TB, increased peroxynitrite concentration in supernatants of peripheral blood mononuclear cell cultures treated with Mtb-HSP may explain the low level of NOx detected in SA. In contrast to TB, monocytes in SA were resistant to Mtb-HSP-induced apoptosis, and CD4+T cell apoptosis was increased. Mtb-HSP-induced apoptosis of CD8+T cells was reduced in all tested groups. In Mtb-HSP-stimulated T cells, lower CD8+γδ+IL-4+T cell frequency with increased TNF-α,IL-6,IL-10 and decreased INF-γ,IL-2,IL-4 production were present in SA, as opposed to an increased presence of CD4+γδ+TCR cells with increased TNF-α,IL-6 levels in TB, vs. controls. Mtb-HSP modulating the level of co-stimulatory molecules, regulatory cells, apoptosis, clonal deletion, epitope spread, polyclonal activation and molecular mimicry between human and microbial HSPs may also participate in the induction of autoimmunity, considered in SA. In conclusion, in different genetically predisposed hosts, the same antigens, e.g., Mtb-HSP, may induce the development of TB or SA, including an autoimmune response in sarcoidosis.
Read full abstract