This paper is aimed at better understanding the nature of C70 aggregates in organic solvents. As liquid media, acetonitrile-toluene mixed solvents were chosen. At a high content of CH3CN, e.g., 90 vol %, colloidal particles with a size of ca. 225 ± 10 nm are formed with a negative ζ-potential of -(55 ± 5) mV and are stable over time. The interaction with electrolytes containing single-, double-, and triple-charged cations was examined using dynamic light scattering and UV-visible spectra. Additional experiments were carried out with methanol and benzene instead of acetonitrile and toluene, respectively. For comparison, data were obtained with C60 organosols. It was found that coagulation obeys the classical Schulze-Hardy rule. The specificity of the coagulating power of various single-charged cations was explained by their different abilities to adsorb on negatively charged C70 aggregates. The overcharging effect is expressed not only for Ca2+ and La3+ ions but even for Li+ and is caused by poor solvation of such cations in a cationophobic solvent, acetonitrile. After introduction of the cryptand [2.2.2], a substantial increase in the critical concentrations of coagulation for Na+, Li+, and Ca2+ was observed owing to conversion of "bare" metal cations into their cryptates. The application of the Derjaguin-Landau-Verwey-Overbeek theory allowed for evaluation of the Hamaker constant of the C70-C70 interaction in vacuum, AFF, which lies in the interval of 5.8-16.6 × 10-20 J. Such an estimate, close to that made previously for C60 organosols, was received after withdrawing electrolytic systems where the hetero- and mutual coagulation were highly likely. However, it is impossible to completely exclude the interfering influence of the latter phenomena. Based on the obtained AFF values, two approaches to understanding the behavior of fullerenes in water were proposed.