Objective: To investigate the clinical phenotype and gene variation conditions in neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), so as to provide a basis for genetic counseling and clinical diagnosis and treatment of the family. Methods: 11 cases of neonatal intrahepatic cholestasis who visited the Children's Hospital Affiliated to Zhengzhou University between February 2019 and March 2021 were selected as the study subjects. High-throughput sequencing technology was used to detect the gene variation condition in 11 neonatal patients and 100 normal control neonates. The suspicious loci and family members were verified by Sanger sequencing and QPCR technology. Results: All 11 children with NICCD had different degrees of jaundice and liver damage symptoms, combined with coagulation dysfunction and anemia (n = 7), cardiac malformation (n = 2), elevated myocardial enzymes (n = 4), hyperlipidemia (n = 1), hyperkalemia (n = 1), persistent diarrhea (n = 3), developmental delay (n = 1). A total of 10 different types of SLC25A13 gene mutations were detected in 11 cases, including three frameshift mutations, two splicing changes, two missense mutations, one intron insertion, one nonsense mutation, and one heterozygous deletion. After reviewing literature and databases, c.1878delG(p.I627Sfs*73) and exon11 deletion were novel mutations that had not been reported at home or abroad. Conclusion: The clinical features of NICCD are non-specific, and genetic testing aids in the early and accurate diagnosis of the disease, providing an important basis for clinical treatment and genetic counseling for family members. In addition, the detection of novel mutation sites has enriched the SLC25A13 gene variation spectrum.
Read full abstract