The minimal genetic requirements for microbes to survive within multiorganism communities, including host-pathogen interactions, remain poorly understood. Here, we combined targeted gene mutagenesis with phenotype-guided genetic reassembly to identify a cooperative network of SPI-2 T3SS effector genes that are sufficient for Salmonella Typhimurium (STm) to cause disease in a natural host organism. Five SPI-2 effector genes support pathogen survival within the host cell cytoplasm by coordinating bacterial replication with Salmonella-containing vacuole (SCV) division. Unexpectedly, this minimal genetic repertoire does not support STm systemic infection of mice. Invivo screening revealed a second effector-gene network, encoded by the spv operon, that expands the life cycle of STm from growth in cells to deep-tissue colonization in a murine model of typhoid fever. Comparison between Salmonella infection models suggests how cooperation between effector genes drives tissue tropism in a pathogen group.
Read full abstract