Narrow spectrum nano-antibiotics are supposedly the future trouble-shooters to improve the efficacy of conventional antimicrobials for treatment of severe bacterial infections, remove contamination from water and diminish the development of antibiotic resistance. In this study, antimicrobial peptide functionalized boron-carbon-nitride nanosheets ((Ant)pep@BCN NSs) are developed that are a promising wastewater disinfector and antibiotic resistant bactericide agent. These nanosheets are developed for selective removal and effective inactivation of antibiotic resistant bacteria (ARB) from water in presence of two virulent bacteria. The (Ant)pep@BCN NSs provide reactive surface receptors specific to the ARB. They mimic muralytic enzymes to damage the cell membrane of ARB. These NSs demonstrate 3-fold higher antimicrobial efficiency against the targeted ARB compared to pristine BCN even at lower concentrations. To the best of our knowledge, this is the first time that functionalized BCN has been developed to remove ARB selectively from wastewater. Furthermore, the (Ant)pep@BCN selectively reduced the microbiological load and led to morphological changes in Gram negative ARB in a mixed bacterial inoculum. These ARBs excreted outer–inner membrane vesicles (OIMVs) of triangular shape as a stimuli response to (Ant)pep@BCN NSs. These novel antimicrobial peptide-NSs have potential to improve treatment efficacy against ARB infections and water contamination.