We present an analysis of MicroBooNE data with a signature of one muon, no pions, and at least one proton above a momentum threshold of 300 MeV/c (CC0πNp). This is the first differential cross-section measurement of this topology in neutrino-argon interactions. We achieve a significantly lower proton momentum threshold than previous carbon and scintillator-based experiments. Using data collected from a total of approximately 1.6×1020 protons on target, we measure the muon neutrino cross section for the CC0πNp interaction channel in argon at MicroBooNE in the Booster Neutrino Beam which has a mean energy of around 800 MeV. We present the results from a data sample with estimated efficiency of 29% and purity of 76% as differential cross sections in five reconstructed variables: the muon momentum and polar angle, the leading proton momentum and polar angle, and the muon-proton opening angle. We include smearing matrices that can be used to “forward fold” theoretical predictions for comparison with these data. We compare the measured differential cross sections to a number of recent theory predictions demonstrating largely good agreement with this first-ever dataset on argon.36 MoreReceived 7 October 2020Accepted 24 November 2020DOI:https://doi.org/10.1103/PhysRevD.102.112013Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasNucleus-neutrino interactionsParticles & Fields