Carbon nanotubes (CNTs) are nanostructures, allotropes of carbon which are made up of graphene sheets wrapped around it forming cylindrical structures. CNTs have been regarded to have interesting and attractive physical and chemical properties and have been tremendously used in genetic engineering. Understanding the role of CNTs in development of transgenic plants, review of research papers in the field was done. CNTs are classified into two categories: the single-walled and multiwalled (MWCNTs) structures. They are valuable vectors in various biomedicine fields such as Gene delivery, Drug delivery, Immunotherapy, Tissue engineering, and Biomedical imaging and also, they deliver the DNA without damaging the cells. Based on recent studies, the functionalization of CNTs when combined with some other suitable molecules can drastically subside their toxic effects. Having unique properties such as small size, larger surface area is useful in delivering DNA into mammalian cells as well. Modifications in CNTs can make nucleic acids adhere to them even more efficiently. Also, MWCNTs are crucial in delivery DNA into the cytoplasm. Based on other methods, the CNTs-DNA are a preferred choice and the inclination toward double-stranded DNA is used over single-stranded DNA in gene delivery shows effective results. The only downside of CNTs is that they are hydrophobic and are difficult to form an aqueous solution, thus limiting their applicability. This review will aid you in comprehending useful knowledge related to a general overview of topics related to CNTs.