PurposeIn time and accurate detection of cancer can save the life of the person affected. According to the World Health Organization (WHO), breast cancer occupies the most frequent incidence among all the cancers whereas breast cancer takes fifth place in the case of mortality numbers. Out of many image processing techniques, certain works have focused on convolutional neural networks (CNNs) for processing these images. However, deep learning models are to be explored well.Design/methodology/approachIn this work, multivariate statistics-based kernel principal component analysis (KPCA) is used for essential features. KPCA is simultaneously helpful for denoising the data. These features are processed through a heterogeneous ensemble model that consists of three base models. The base models comprise recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit (GRU). The outcomes of these base learners are fed to fuzzy adaptive resonance theory mapping (ARTMAP) model for decision making as the nodes are added to the F_2ˆa layer if the winning criteria are fulfilled that makes the ARTMAP model more robust.FindingsThe proposed model is verified using breast histopathology image dataset publicly available at Kaggle. The model provides 99.36% training accuracy and 98.72% validation accuracy. The proposed model utilizes data processing in all aspects, i.e. image denoising to reduce the data redundancy, training by ensemble learning to provide higher results than that of single models. The final classification by a fuzzy ARTMAP model that controls the number of nodes depending upon the performance makes robust accurate classification.Research limitations/implicationsResearch in the field of medical applications is an ongoing method. More advanced algorithms are being developed for better classification. Still, the scope is there to design the models in terms of better performance, practicability and cost efficiency in the future. Also, the ensemble models may be chosen with different combinations and characteristics. Only signal instead of images may be verified for this proposed model. Experimental analysis shows the improved performance of the proposed model. This method needs to be verified using practical models. Also, the practical implementation will be carried out for its real-time performance and cost efficiency.Originality/valueThe proposed model is utilized for denoising and to reduce the data redundancy so that the feature selection is done using KPCA. Training and classification are performed using heterogeneous ensemble model designed using RNN, LSTM and GRU as base classifiers to provide higher results than that of single models. Use of adaptive fuzzy mapping model makes the final classification accurate. The effectiveness of combining these methods to a single model is analyzed in this work.
Read full abstract