Cyber-physical Systems (CPS) have revolutionized urban transportation worldwide, but their implementation in developing countries faces significant challenges, including infrastructure modernization, resource constraints, and varying internet accessibility. This paper proposes a methodological framework for optimizing the implementation of Cyber-Physical Urban Mobility Systems (CPUMS) tailored to improve the quality of life in developing countries. Central to this framework is the Dependency Structure Matrix (DSM) approach, augmented with advanced artificial intelligence techniques. The DSM facilitates the visualization and integration of CPUMS components, while statistical and multivariate analysis tool such as Principal Component Analysis (PCA) and artificial intelligence methods such as K-means clustering enhance complex system the analysis and optimization of complex system decisions. These techniques enable engineers and urban planners to design modular and integrated CPUMS components that are crucial for efficient, and sustainable urban mobility solutions. The interdisciplinary approach addresses local challenges and streamlines the design process, fostering economic development and technological innovation. Using DSM and advanced artificial intelligence, this research aims to optimize CPS-based urban mobility solutions, by identifying critical outliers for targeted management and system optimization.
Read full abstract