SummaryBy using the collected batch data and the iterative search, and based on the filtering identification idea, this article investigates and proposes a filtered multi‐innovation generalized projection‐based iterative identification method, a filtered generalized gradient‐based iterative identification method, a filtered generalized least squares‐based iterative identification method, a filtered multi‐innovation generalized gradient‐based iterative identification method and a filtered multi‐innovation generalized least squares‐based iterative identification method for equation‐error autoregressive systems described by the equation‐error autoregressive models. These filtered generalized iterative identification methods can be extended to other linear and nonlinear scalar and multivariable stochastic systems with colored noises.
Read full abstract