Abstract A new methodology that decomposes shocks into homoscedastic and heteroscedastic components is developed. This specification implies there exist linear combinations of heteroscedastic variables that eliminate heteroscedasticity; a property known as co-heteroscedasticity. The heteroscedastic part of the model uses a multivariate stochastic volatility inverse Wishart process. The resulting model is invariant to the ordering of the variables, which is shown to be important for volatility estimation. By incorporating testable co-heteroscedasticity restrictions, the specification allows estimation in moderately high-dimensions. The computational strategy uses a novel particle filter algorithm, a reparameterization that substantially improves algorithmic convergence and an alternating-order particle Gibbs that reduces the amount of particles needed for accurate estimation. An empirical application to a large Vector Autoregression (VAR) is provided, finding strong evidence for co-heteroscedasticity and that the new method outperforms some previously proposed methods in terms of forecasting at all horizons. It is also found that the structural monetary shock is 98.8 % homoscedastic, and that investment and the SP 500 index are nearly 100 % determined by fat tail heteroscedastic shocks. A Monte Carlo experiment illustrates that the new method estimates well the characteristics of approximate factor models with heteroscedastic errors.
Read full abstract