We study multisymplectic structures taking values in vector bundles with connections from the viewpoint of the Hamiltonian symmetry. We introduce the notion of bundle-valued n-plectic structures and exhibit some properties of them. In addition, we define bundle-valued homotopy momentum sections for bundle-valued n-plectic manifolds with Lie algebroids to discuss momentum map theories in both cases of quaternionic Kähler manifolds and hyper-Kähler manifolds. Furthermore, we generalize the Marsden-Weinstein-Meyer reduction theorem for symplectic manifolds and construct two kinds of reductions of vector-valued 1-plectic manifolds.
Read full abstract