Background: Human papillomavirus (HPV)-induced cervical cancer progresses through a series of steps. Despite our limited understanding of the mechanisms driving this progression, identifying the key genes involved could significantly improve early detection and treatment. Materials and Methods: Two gene expression profiles of GSE9750 and GSE6791, which included cervical cancer HPV-positive and -negative samples, were evaluated using the R limma package with established cut-off criteria of P value < 0.05 and | fold change| ≥ 1. KEGG pathway enrichment was performed to identify potential pathways. Weighted gene co-expression network analysis (WGCNA) was used to discover co-expressed gene modules and trait–module connections. Results: Considering the defined criteria, 115 differentially expressed genes (DEGs) were identified. The DEG’s KEGG pathway enrichment analysis revealed enrichment in highly relevant pathways to the HPV infection, including cell cycle, viral carcinogenesis, autophagy-animal, Epstein-Barr virus infection, human T-cell leukemia virus 1 infection, and microRNAs in cancer. WGCNA results in 13 co-expression modules, and the magenta module is identified with significant relations to HPV, cervical cancer stage, and metastasis traits. The survival analysis identified BEX1 and CDC45 as potential prognostic factors in HPV-associated cervical cancer. Conclusion: The innovation of our work lies in identifying essential genes associated with the multi-step process of cervical carcinogenesis. In fact, the current study has the potential to give a distinct viewpoint on the molecular pathways linked to cervical cancer. Considering the potential importance of the hub genes, we recommend conducting in-depth wet lab research to determine their impact on the biological mechanisms of cervical cancer.