Recently, accurate segmentation of COVID-19 infection from computed tomography (CT) scans is critical for the diagnosis and treatment of COVID-19. However, infection segmentation is a challenging task due to various textures, sizes and locations of infections, low contrast, and blurred boundaries. To address these problems, we propose a novel Multi-scale Wavelet Guidance Network (MWG-Net) for COVID-19 lung infection by integrating the multi-scale information of wavelet domain into the encoder and decoder of the convolutional neural network (CNN). In particular, we propose the Wavelet Guidance Module (WGM) and Wavelet & Edge Guidance Module (WEGM). Among them, the WGM guides the encoder to extract infection details through the multi-scale spatial and frequency features in the wavelet domain, while the WEGM guides the decoder to recover infection details through the multi-scale wavelet representations and multi-scale infection edge information. Besides, a Progressive Fusion Module (PFM) is further developed to aggregate and explore multi-scale features of the encoder and decoder. Notably, we establish a COVID-19 segmentation dataset (named COVID-Seg-100) containing 5800+ annotated slices for performance evaluation. Furthermore, we conduct extensive experiments to compare our method with other state-of-the-art approaches on our COVID-19-Seg-100 and two publicly available datasets, <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i.e</i> ., MosMedData and COVID-SemiSeg. The results show that our MWG-Net outperforms state-of-the-art methods on different datasets and can achieve more accurate and promising COVID-19 lung infection segmentation.
Read full abstract