Engineered cementitious composites features with high tensile performance while relatively weak compressive stiffness. This study endeavors to address the inherent trade-off between tensile properties and elastic modulus in conventional Engineered Cementitious Composites (ECC). Utilizing the distinctive characteristics of iron ore aggregates, known for their relatively stiff nature, smooth surface and rounded shape, an Iron Sand-based ECC (IS-ECC) emphasizing both high elastic modulus and ductility is formulated. Guided by micromechanical design theory and multiscale homogenization model, this study systematically explores the impacts of aggregate types, water-to-binder (w/b) ratios, sand-to-binder (s/b) ratios, and sand particle sizes on ECC properties. Compared with Quartz Sand-based ECC (QS-ECC), IS-ECC exhibits notably enhanced matrix fluidity and elastic modulus, reduced matrix toughness, and more robust strain-hardening behavior. The proposed three-level multiscale homogenization model accurately predicts the elastic modulus of ECC and provides insights into the underlying mechanism contributing to the enhanced elastic modulus of IS-ECC. With a resulting high elastic modulus of 33.3–48.6 GPa and superior tensile properties, IS-ECC holds promise for widespread applications in structural engineering.
Read full abstract