The Grey Wolf Optimization (GWO) is a highly effective meta-heuristic algorithm leveraging swarm intelligence to tackle real-world optimization problems. However, when confronted with large-scale problems, GWO encounters hurdles in convergence speed and problem-solving capabilities. To address this, we propose an Improved Adaptive Grey Wolf Optimization (IAGWO), which significantly enhances exploration of the search space through refined search mechanisms and adaptive strategy. Primarily, we introduce the incorporation of velocity and the Inverse Multiquadratic Function (IMF) into the search mechanism. This integration not only accelerates convergence speed but also maintains accuracy. Secondly, we implement an adaptive strategy for population updates, enhancing the algorithm's search and optimization capabilities dynamically. The efficacy of our proposed IAGWO is demonstrated through comparative experiments conducted on benchmark test sets, including CEC 2017, CEC 2020, CEC 2022, and CEC 2013 large-scale global optimization suites. At CEC2017, CEC 2020 (10/20 dimensions), CEC 2022 (10/20 dimensions), and CEC 2013, respectively, it outperformed other comparative algorithms by 88.2%, 91.5%, 85.4%, 96.2%, 97.4%, and 97.2%. Results affirm that our algorithm surpasses state-of-the-art approaches in addressing large-scale problems. Moreover, we showcase the broad application potential of the algorithm by successfully solving 19 real-world engineering challenges.
Read full abstract