Tucker decomposition is widely used for image representation, data reconstruction, and machine learning tasks, but the calculation cost for updating the Tucker core is high. Bilevel form of triple decomposition (TriD) overcomes this issue by decomposing the Tucker core into three low-dimensional third-order factor tensors and plays an important role in the dimension reduction of data representation. TriD, on the other hand, is incapable of precisely encoding similarity relationships for tensor data with a complex manifold structure. To address this shortcoming, we take advantage of hypergraph learning and propose a novel hypergraph regularized nonnegative triple decomposition for multiway data analysis that employs the hypergraph to model the complex relationships among the raw data. Furthermore, we develop a multiplicative update algorithm to solve our optimization problem and theoretically prove its convergence. Finally, we perform extensive numerical tests on six real-world datasets, and the results show that our proposed algorithm outperforms some state-of-the-art methods.
Read full abstract