MicroRNAs (miRNAs) are currently recognized as important biomarkers for the early diagnosis and prognostic treatment of cancer. Herein, we developed a simple and label-free method for the multiplex detection of miRNAs, based on entropy-driven circuit (EDC) amplification and non-gel sieving capillary electrophoresis-LED induced fluorescence detection (NGCE-LEDIF) platform. In this system, three different lengths of fuel chains were designed to catalyze three EDC, targeting miRNA-21, miRNA-155, and miRNA-10b, respectively. In the presence of target miRNA, the EDC cycle amplification reaction was triggered, generating numerous stable double-strands products (F-DNA/L-DNA). Since the three miRNAs correspond to three different lengths of F-DNA/L-DNA, they can be easily isolated and detected by NGCE. This strategy has good sensitivity, with detection limits of 68 amol, 292.2 amol, and 394 amol for miRNA-21, miRNA-155, and miRNA-10b, respectively. Additionally, this method has good specificity and can effectively distinguish single-base mismatches of miRNA. The recoveries of the three miRNAs in deproteinized healthy human serum ranged from 91.28 % to 108.4 %, with a relative standard deviation (RSD) of less than 7.9 %. This method was further applied to detect cellular miRNAs in human breast cancer (MCF-7) cell extracts, revealing an up-regulation of miRNA-21, miRNA-155, and miRNA-10b in MCF-7 cells. The successful spiked recovery in human serum and RNA extraction from MCF-7 cells underscores the practicality of this method. Therefore, this strategy has broad application prospects in biomedical research.
Read full abstract