Paenibacillus larvae and Melissococcus plutonius are the causative agents of American and European foulbroods of honey bees, respectively. Since their virulence and resistance to disinfectants differ depending on the genotypes/phenotypes of the strains, the discrimination of strain types is important for the effective control of these diseases. Methods to detect and differentiate pathogens in honey are useful for surveying the contamination status of beehives/apiaries. In the present study, we selected a sequence (GenBank accession no. FI763267) as the specific target for enterobacterial repetitive intergenic consensus (ERIC) II-type P. larvae strains for the first time and developed a novel multiplex PCR assay that precisely distinguishes between the major types of foulbrood pathogens (ERIC I and II P. larvae and typical and atypical M. plutonius) in one reaction. In addition, we found that commercially available kits designed for DNA extraction from Mycobacterium in feces efficiently extracted DNA from foulbrood pathogens in honey. Using the multiplex PCR assay and DNA extraction kits, all the targeted types of P. larvae and M. plutonius were detected in honey spiked with the pathogens at a concentration of 100 bacterial cells/strain/ml. Moreover, 94% of the Japanese honey samples examined in the present study were contaminated with one or more types of the foulbrood pathogens. These results indicate that the newly developed methods are useful for detecting foulbrood pathogens in honey. The epidemiological information obtained by these methods will contribute to the effective control of foulbroods in apiaries.