To tackle the issues of cooperative energy and reserve trading as well as fair cooperative benefit allocation among multiple integrated energy systems (IESs), this paper proposes a two-stage cooperative energy and reserve trading model for multiple integrated energy systems (MIESs). Specifically, at day-ahead stage, MIESs aim to maximize their overall profit through cooperative electricity and heat trading. At real-time stage, MIESs trade demand response (DR) reserve to minimize the overall wind power deviation compensation cost. To reduce the complexity in model solution, we transform the model into two sub-problems. In sub-problem 1, we determine the energy and DR reserve trading volumes. Here, distributionally robust optimization (DRO) is utilized to manage the severe uncertainties in wind power distribution. In sub-problem 2, based on the outcomes from sub-problem 1, we settle the energy and DR reserve trading prices. To ensure the fairness of benefit allocation, asymmetric Nash bargaining theory is applied to assess each IES's contributions in trading volumes and profit growth. Interval adaptive alternating direction method of multipliers (IA-ADMM) is used to preserve each IES's privacy. Finally, simulation results demonstrate that, compared with independent operation, cooperative trading among MIESs increases profits for all IESs, thereby motivating their participation in cooperative trading.
Read full abstract