A novel antenna array with improved radiation characteristics using a series-feed technique is presented in this article. The antenna array has a size of 132 × 80 μm and is developed using Polytetrafluoroethylene (PTFE) with graphene as conductive material. The proposed antenna comprises a central microstrip line loaded with short slant radiating stubs. The bandwidth characteristics of the antenna are enhanced by loading the slant stubs with octagonal ring elements. The number of radiating stubs is increased to enhance the overall radiation characteristics. The proposed THz antenna operates from 3.8 THz to 5.3 THz offering a fractional bandwidth of 31 % with reference |S11| ≤ −10 dB. In addition, a 1 × 2 antenna array with differential feeding is explored to improve the overall directionality of the antenna making it a viable solution for directional IoT systems. The estimated theoretical directivity is above 11 dBi and the total efficiency is greater than 75 % throughout the operating bandwidth. Furthermore, the multiple input and multiple output (MIMO) performance of the THz antenna is discussed. The proposed two-element has an intrinsic isolation of more than 40 dB. Owing to the enhanced bandwidth and radiation property, the proposed THz antenna is suitable for high data-rate 6 G Internet-of-things (IoT) communications.
Read full abstract