Topographic correction methods rarely consider the canopy parameter effects directly and explicitly for sloping canopies. In order to address this problem, the topographic correction method MFM-GOST2 was developed by implementing the second version of the Geometric-Optical model for Sloping Terrains (the GOST2 model) in the multiple forward mode (MFM) inversion framework. First, a look up table (LUT) was constructed by multiple forward modeling of the GOST2 model; second, the radiance of a remotely sensed image and its corresponding topographic data were used for searching potential canopy parameter combinations from the LUT; and third, the corrected radiance was determined by averaging potential radiances of horizontal canopies from the LUT according to the canopy parameter combinations. The MFM-GOST2 and twelve generally used topographic correction methods were evaluated via a case study by visual analysis, linear relationship analysis, and the rose diagram analysis. The result showed that the MFM-GOST2 method successfully removed most of the topographic effects of a subset image of the Landsat-8 image in a case study. The case study also illustrates that the rose diagram analysis is a good way to evaluate topographic corrections, but the linear relationship analysis cannot be used independently for the evaluations because the decorrelation is not a sufficient condition to determine a successful topographic correction.
Read full abstract