The resilient framework of Linguistic Intuitionistic Fuzzy Sets (LIFSs) allows for the representation and management of uncertainties related to intuitionistic judgments and linguistic expressions. Recent advances in passive and active safety systems have reduced highway fatalities. Autonomous vehicles can improve safety, efficiency, and mobility by navigating traffic without a driver. One of the primary benefits associated with this technology is that it reduces the number of traffic collisions that result in millions of fatalities and numerous injuries. In this research work, we devise two novel aggregation operators: the linguistic intuitionistic fuzzy Dombi ordered weighted averaging (LIFDOWA) operator and the linguistic intuitionistic fuzzy Dombi ordered weighted geometric (LIFDOWG) operator, and explore their fundamental structural properties. We provide innovative score and accuracy functions for multiple attribute decision-making (MADM) problems within the framework of LIF knowledge. Moreover, we use these techniques to develop a specialized algorithm for MADM issues that addresses the complexities arising from ambiguous data during the selection process. We also demonstrate the effectiveness of our proposed methods by applying them to solve the MADM scenario of selecting an optimal approach to improve the credibility of autonomous vehicle control systems on a commercial scale. In addition, we also compare and evaluate the authenticity and practicability of the newly designed techniques in comparison to existing methodologies.
Read full abstract