This study's goal is to provide an early analysis of deep learning (DL) for signal identification in wireless systems that use non-orthogonal multiple access (NOMA). The successive interference cancellation (SIC) approach is frequently used at the receiver in NOMA systems when several users are decoded successively. Without explicitly calculating channels, a DL-based NOMA receiver can decode messages for several users at once. To estimate the multiuser uplink channel (CE) and recognize the initial broadcast signal in this study, it is recommended that a deep neural network with bi-directional long short-term memory (Bi-LSTM) be utilized. The suggested Bi-LSTM model, in contrast to conventional CE techniques, may immediately retrieve transmission signals impacted by channel distortion. During the offline training phase, the Bi-LTSM model is trained using simulation data based on channel statistics. The trained model is then applied to retrieve the transmitted symbols in the stage of online deployment. According to the findings, the DL method could outperform a maximum probability detector that considers interference effects when inter-symbol interference is substantial.